
RDD Operations

1. RDD transformations

2. RDD transformations on key-value pairs

3. RDD actions

4. Caching

5. Spark jobs - the big picture

Contents

2

 Mapping and filtering transformations
 Set-based transformations
 Combinatorial transformations
 Grouping and sorting transformations
 Additional transformations

 Demos for this section are in the following directory:
• transformations

1. RDD Transformations

3

 map(func)
• Returns a new RDD, formed by passing each element of the source

RDD through the supplied func

 filter(func)
• Returns a new RDD, formed by selecting those elements of the

source RDD where the supplied func returns true

Mapping and Filtering Transformations (1 of 2)

4

 flatMap(func)
• Similar to map, but each input item can be mapped to 0 or more

output items
• So the func should return a sequence rather than a single item

 mapPartitions(func)
• Similar to map, but runs separately on each partition (i.e. block) of

the RDD
• The function must be of type Iterator<T> => Iterator<U> when

running on an RDD of type T

Mapping and Filtering Transformations (2 of 2)

5

 union(otherRDD)
• Returns a new RDD that contains the union of the elements in the source

RDD and the argument

 intersection(otherRDD)
• Returns a new RDD that contains the intersection of the elements in the

source RDD and the argument

 subtract(otherRDD)
• Returns a new RDD that contains the elements in the source RDD but not

in the argument

 distinct
• Returns a new RDD that contains the distinct elements in the source RDD

Set-Based Transformations

6

 cartesian(otherRDD)
• Returns a new RDD that contains the cartesian product of all the

elements in both RDDs

 zip(otherRDD)
• Returns an RDD of pairs
• The 1st element of each pair comes from the source RDD
• The 2nd element of each pair comes from the argument RDD

 zipWithIndex
• Returns an RDD of pairs
• The 1st element of each pair comes from the source RDD
• The 2nd element of each pair is the index

Combinatorial Transformations

7

 groupBy(func)
• Returns an RDD of pairs
• The 1st element of each pair is a key, generated by the func
• The 2nd element of each pair is a collection of items with that key

 keyBy(func)
• Returns an RDD of pairs, one pair for each item in the source RDD
• The 1st element of each pair is a key, generated by the func
• The 2nd element of each pair is the item with that key

 sortBy(func, optionalAscFlag)
• Sorts elements in the source RDD, according to the func
• The 2nd arg is an optional boolean, indicating whether to sort in

ascending order (default is true)

Grouping and Sorting Transformations

8

 randomSplit(weightingsArray)
• Splits the source RDD into an array of RDDs (randomly-populated)
• The relative sizes of the array of RDDs is determined by the weightings-

array argument

 coalesce(number)
• Reduces number of partitions in an RDD, according to number arg
• Useful for consolidating small RDDs, may improve performance

 repartition(number)
• Returns an RDD with the specified number of partitions
• Useful for increasing parallelism

 sample(replacementStrategy, sizeRatio, seed)
• Returns a sampled subset of the source RDD

Additional Transformations

9

 Overview
 Working with keys and values
 Joins
 Key-based operations

 Demos for this section are in the following directory:
• transformationsKV

2. RDD Transformations on Key-Value Pairs

10

 Spark provides RDD transformation operations specifically
for RDDs of key-value pairs
• In addition to the general transformation operations we discussed

in the previous section

 We'll take a look at the common key-pair transformation
operations in this section

Overview

11

 keys
• Returns an RDD containing just the keys from the source RDD

 values
• Returns an RDD containing just the values from the source RDD

 mapValues(func)
• Applies the func to all the values in the source RDD
• Returns an RDD containing original keys and transformed values

Working with Keys and Values

12

 join(otherKvRdd)
• Takes another RDD of key-value pairs
• Performs an inner join between the source RDD and the arg RDD

 leftOuterJoin(otherKvRdd)
• Similar to join, except it performs a left outer join

 rightOuterJoin(otherKvRdd)
• Similar to join, except it performs a right outer join

 fullOuterJoin(otherKvRdd)
• Similar to join, except it performs a full outer join

Joins

13

 sampleByKey(replaceFlag, fractionsMap)
• Takes a fractions map as an argument, indicating the approximate fractional

sample size desired for each key
• Returns an RDD that contains random items from the source RDD

 sourceRdd.subtractByKey(otherKvRdd)
• Takes another RDD of key-value pairs
• Returns an RDD of key-value pairs, containing items in the source RDD but not

in the arg RDD

 groupByKey
• Returns an RDD of key-value pairs, grouped by key

 reduceByKey(associativeBinaryOperator)
• Takes an associative binary operator as an argument
• Reduces values with the same key, via that operator

Key-Based Operations

14

 Overview
 Aggregation
 Taking items
 Collection and reduction
 Key-based actions
 Actions on numeric types
 Saving an RDD

 Demos for this section are in the following directory:
• actions

3. Actions

15

 Actions are RDD methods that return a result to the
program, or which save the RDD to a storage system
• It's only when you call an action method that Spark will perform

pending transformation methods
• This is the "lazy processing" concept we discussed earlier - an

important optimization feature in Spark

 We'll take a look at the common RDD action methods in
this section

Overview

16

 first
• Returns the first element in the source RDD

 min, max
• Return the minimum and maximum elements in the source RDD

 count
• Returns a count of elements in the source RDD

 countByValue
• Returns the count of each unique element in the source RDD
• Returns the info as a Map (key is the element, value is the count)

Aggregation

17

 take(number)
• Returns an array containing the first few items, as specified by

number argument

 takeOrdered(number)
• Returns an array containing the smallest few items, as specified by

number argument

 takeTop(number)
• Returns an array containing the largest few items, as specified by

number arg

Taking Items

18

 collect
• Returns the elements in the source RDD as an array
• Use with caution - it moves data from all the worker nodes to the

driver program (could crash the driver program if very large RDD)

 reduce(associativeBinaryOperator)
• Takes an associative binary operator as an argument
• Reduces items in the source RDD, via that operator

Collection and Reduction

19

 countByKey
• Operates on an RDD of key-value pairs
• Returns a map of key-count pairs

 lookup(key)
• Operates on an RDD of key-value pairs
• Takes a key as an argument, and returns a sequence of all the

values mapped to that key

Key-Based Actions

20

 sum
• Takes a numeric RDD and returns the sum

 mean
• Takes a numeric RDD and returns the average

 stdev
• Takes a numeric RDD and returns the standard deviation

 variance
• Takes a numeric RDD and returns the variance

Actions on Numeric Types

21

 saveAsTextFile(directory)
• Converts each element in the source RDD to a string, and stores each

string on a separate line

 saveAsObjectFile(directory)
• As above, except each element is saved as a serialized Java object in

the specified directory

 saveAsSequenceFile(directory)
• Saves an RDD of key-value pairs in SequenceFile format

 Note:
• All of these methods take a directory name as input, and create one

file for each RDD partition in the specified directory

Saving an RDD

22

 Recap of lazy operations
 The need for caching
 Caching RDDs
 The cache() method
 The persist() method
 Storage levels for the persist() method

 Demos for this section are in the following directory:
• caching

4. Caching

23

 As discussed previously, RDD creation and transformation
methods are lazy operations
• Spark just keeps track of the hierarchy of operations required

 When an action method is called on an RDD…
• Spark creates that RDD from its parents, which might require

creation of the parent RDDs, and so on
• This process continues until Spark gets to the root RDD, which

Spark creates by reading data from a storage system

Recap of Lazy Operations

24

 The process on the previous slide happens every time you
call an action method
• Every time you call an action method on an RDD, Spark traverses

the RDD hierarchy and computes all the transformations in the
chain

 This can cause undesirable re-computations
• E.g. the following code calls the count() action method twice
• This will cause the filter() operation to be performed twice!

The Need for Caching

25

// This code is in nocache.scala.

val logs = sc.textFile("log_files")

val errorLogs = logs filter { line => line.contains("ERROR") }

val errorCount = errorLogs.count
val errorCountAgain = errorLogs.count

// This code is in nocache.scala.

val logs = sc.textFile("log_files")

val errorLogs = logs filter { line => line.contains("ERROR") }

val errorCount = errorLogs.count
val errorCountAgain = errorLogs.count

 Spark allows you to cache an RDD
• Via the cache() and persist() methods
• See following slides for examples

 When you cache an RDD:
• Nothing happens immediately…
• The first time you call an action method on the RDD, Spark will

cache the result of all transformations up to that point

Caching RDDs

26

 The cache() method stores an RDD in memory on the
executors across a cluster

The cache() Method

27

// This code is in cache.scala.

val logs = sc.textFile("log_files")

val errorLogs = logs filter { line => line.contains("ERROR") }
errorLogs.cache

val errorCount = errorLogs.count
val errorCountAgain = errorLogs.count

// This code is in cache.scala.

val logs = sc.textFile("log_files")

val errorLogs = logs filter { line => line.contains("ERROR") }
errorLogs.cache

val errorCount = errorLogs.count
val errorCountAgain = errorLogs.count

 The persist() method allows you to specify where and
how you'd like the dataset to be persisted

The persist() Method

28

// This code is in persist.scala.

import org.apache.spark.storage.StorageLevel._

val logs = sc.textFile("log_files")

val errorLogs = logs filter { line => line.contains("ERROR") }
errorLogs.persist(DISK_ONLY)

val errorCount = errorLogs.count

// This code is in persist.scala.

import org.apache.spark.storage.StorageLevel._

val logs = sc.textFile("log_files")

val errorLogs = logs filter { line => line.contains("ERROR") }
errorLogs.persist(DISK_ONLY)

val errorCount = errorLogs.count

Storage level Description
MEMORY_ONLY Store RDD as raw Java objects in the JVM.

If the RDD doesn't fit in memory, some partitions will not be cached
and will be recomputed each time they're needed.

MEMORY_AND_DISK Store RDD as raw Java objects in the JVM.
If the RDD doesn't fit in memory, store partitions that don't fit on disk.

MEMORY_ONLY_SER Store RDD as serialized Java objects (one byte-array per partition).
Generally more space-efficient than raw objects, especially when using
a fast serializer, but more CPU-intensive to read.

MEMORY_AND_DISK_SER Similar to MEMORY_ONLY_SER, but spill partitions that don't fit in
memory to disk instead of recomputing each time they're needed.

DISK_ONLY Store the RDD partitions only on disk.

MEMORY_ONLY_2,
MEMORY_AND_DISK_2,
etc.

Same as the levels above, but replicate each partition on two cluster
nodes.

Storage Levels for the persist() Method

29

 Jobs
 Stages and tasks

5. Spark Jobs - The Big Picture

30

 Recap: What is a job?
• A job is a set of computations that Spark performs to return the

results of an action to a driver program

 An application can launch one or more jobs
• An application launches a job by calling an action method of an

RDD (i.e. an action method triggers a job)
• Spark applies the transformations required to create the RDD

whose action method was called
• Finally, Spark performs the computations specified by the action

 A job is completed when a result is returned to a driver
program

Jobs

31

 When an application calls an RDD action method, Spark
creates a DAG of task stages
• It groups tasks into stages using shuffle boundaries
• Tasks that don't require a shuffle are grouped into the same stage
• A task that requires its input data to be shuffled begins a new

stage

 A stage can be executed on multiple concurrent threads
• Spark submits tasks to the executors, which run the tasks in

parallel
• If a node fails while working on a task, Spark resubmits task to

another node

Stages and Tasks

32

33

Any Questions?

	Slide 1
	Contents
	1. RDD Transformations
	Mapping and Filtering Transformations (1 of 2)
	Mapping and Filtering Transformations (2 of 2)
	Set-Based Transformations
	Combinatorial Transformations
	Grouping and Sorting Transformations
	Additional Transformations
	2. RDD Transformations on Key-Value Pairs
	Overview
	Working with Keys and Values
	Joins
	Key-Based Operations
	3. Actions
	Overview
	Aggregation
	Taking Items
	Collection and Reduction
	Key-Based Actions
	Actions on Numeric Types
	Saving an RDD
	4. Caching
	Recap of Lazy Operations
	The Need for Caching
	Caching RDDs
	The cache() Method
	The persist() Method
	Storage Levels for the persist() Method
	5. Spark Jobs - The Big Picture
	Jobs
	Stages and Tasks
	Any Questions?

